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Clustering in Fe-3.9 at. % Mo 
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The diffuse X-ray scattering from a single crystal of Fe-3.9 at. % Mo has been measured at room tem- 
perature. A volume in reciprocal space was explored, which was chosen so that the intensity due to local 
order could be separated from the effects of different atomic sizes of the species and first-order thermal 
diffuse scattering making use of the symmetry of these contributions according to a theory by Boric & 
Sparks. The Warren local order parameters have been derived and used in a computer program to gen- 
erate the corresponding atomic distributions. The Mo atoms formed clusters on the average 7 to 8 Mo 
atoms in size, the clustered regions having about twice the Mo concentration as the average alloy com- 
position. The largest clusters contained about 40 Mo atoms. The shapes of all these regions were ir- 
regular. An analysis of the scattering due solely to the differences in atomic size of Fe and Mo indicates 
that the Fe atoms are displaced from lattice points by about 0.001/~. 

1. Introduction 

Iron-rich Fe-Mo alloys form body-centred cubic (b.c.c.) 
solid solutions with a maximum Mo content of about 
26 at.% at about 1400°C (Hansen, 1958). Upon cooling 
a supersaturated solid solution decomposes, as the low 
temperature solubility is about 2 at.%. Employing elec- 
tron microscopy, Hornbogen (1961) found that after an- 
nealing a 20 at.% Mo alloy at 500°C for up to 500 hr, 
Mo-rich disks are found on dislocation loops lying in 
{100} planes. After 500 hr the disks convert to par- 
ticles of a Mo-rich b.c.c, solid solution. The particles 
are stable at or below 500°C but above 500°C they 
convert into the phase Fe3Mo2. To explain the occur- 
rence of the Mo-rich b.c.c, particles Hornbogen (1966) 
assumed the existence of a metastable miscibility gap. 
Marcus, Fine & Schwartz (1967) did not observe any 
Mo-rich disks in an Fe-6 at.% Mo alloy after an- 
nealing between 500 and 650°C for various times. In- 
stead, precipitation of FezMo started after about 100 
hr in agreement with a recent determination of the 
Fe-Mo equilibrium diagram by Sinha, Buckley & 
Hume-Rothery (1967). However, from M6ssbauer 
measurements Marcus, Fine & Schwartz (1967) found 
a tendency for Mo atoms to be surrounded by other 
Mo atoms in specimens annealed for only a few hours 
at 550°C, long before the FezMo phase appeared. 

Thus there is some evidence for clustering of Mo 
atoms being the first stage of the decomposition of 
Fe-rich Fe-Mo solid solutions. The present work aims 
at giving a detailed picture of the atomic configura- 
tions in the solid solution at an aging time below that 
at which the equilibrium phase separates from meas- 
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urements of diffuse X-ray scattering. Sparks & 
Borie (1966) have suggested that it is possible to 
separate from the total diffuse scattering at only one 
temperature, the part which is due to local order, 
because of the symmetry of the contributing terms. 
(Here the term local order will be used in a general 
sense including clustering as well as short-range order). 

This paper is the first 3-D test of this method, and we 
show that it allows quantitative study of the diffuse 
scattering from systems which cluster, as well as those 
with short-range order; previous to this development 
only the latter state could be studied in detail. Knowing 
the intensity due to local order, the Warren local- 
order parameters were derived, from which the atomic 
distributions were generated using a computer tech- 
nique developed by Gehlen & Cohen (1965). The distri- 
butions found for this alloy showed clusters of about 
7 to 8 Mo atoms with a maximum size of 40 atoms. 

The separated scattering due to size differences of 
the atoms yielded information about the static displace- 
ments of Fe atoms from lattice points. 

2. Diffraction theory 

2.1. General 
The coherently scattered intensity from a binary al- 

loy can be written as the sum of the intensity asso- 
ciated with the Bragg peaks, Ifund, and the total 
diffuse intensity, ID. Furthermore, I9 can be written as 
the sum of three terms 

_ _  0 0 0 I n -  ( I s R o  + lSM + IH,TDs)NXAXB(fA --fB) 2 (1) 
where I°Ro is the scattering due to local order, I°M is 
the so-called size effect-modulation term and I °, TDS is 
due to first-order thermal diffuse and Huang (size) 
scattering. Each term can be written in electron units 
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as a series, correct to terms involving the squares of 
displacements of atoms from lattice points (Sparks 
&Bor ie ,  1966; Boric & Sparks, 1971): 

IORo= ~ ~ ~ o~t,,~cos2rc(hll+ h2m + h3n), (2) 
l m n 

l°sM = -  ~ ~ ~ (h,Y~,~+h2~,~ 
l m n 

+ hayf,.,,)sin 2z~(hzl+ h2rn + han), (3) 

Z Z Z hlar. +h h  Z  
l m n 

+ hzhac~ + hah~ef~) cos 2n(hj  + h2m + h3n) , (4) 

N is the number of atoms, xA and xn are the atomic 
fractions of elements A and B, f.4 and fn  are scattering 
factors, l, m, n are atomic coordinates and h~, h2, h3 are 
continuous variables in reciprocal space.* 

, (5) ctt,,~-- 1 aB 
x ~ ',4,4 A A  B B  B B  A B  A B  <x,.~>+F,~.<x,.~>] (6) 7~,,~- 2zt[F~=,, <X,mn> + F~,,,n 

61,..=(-2,r~)[F,"~ <(x~'~)~>+ ~'~ &.~<(x~)~> 
A B  A B  + Fz.~ <(xt,,~)2>], (7) 

z 2 A A  A A  A A  B B  ,BB  > ~ = ( -  4zt )[Ft,,,,, <y~zz.,m>+Fz~<yzmnz ~ 
..~ IYAB / ~,,,fB . , 4 B  • \ :  > ] .  (8 )  

The definitions of ?f,,~, y~,,~, 6f,,~, 6f,,~,e ~t,,~ and at,,,'~ are 
analogous, x~,,~, " y ~  and z~,,~ ~t are the coordinates in the 
real lattice of the difference, " 6~,,,, of the deviations of an 
i atom and a j atom from their average positions. 

A B  Pt,,, is the probability of finding a B atom next to an 
A atom for the vector (l,m,n). The quantities F~a,~ etc. 
are defined by 

A A  Fz,,= = [ f  a / ( f  a - f  s)]2(xa/xn + %,=), (9) 

F ~  = [ f  s / ( f  a - f  n)]2(xn/xa+%,~) , (10) 

A B  F,,,= = 2 f a f n / ( f a - f n ) 2 ( 1 - % , , , ) .  (11) 

The averages <x~,,~ >, etc. of the components of the 
deviations in interatomic spacings of two A atoms are 
to be taken over all iq pairs separated by a constant 
ff=-e.). 

Inserting equations (2)-(4) into equation (1) 

1D(hx, hz, ha) = N x  axn(f  a - f  n)z[IOsRo + hlQx(h~,h2,ha) 
+ h2Q~(h~, h2, h3) + h3Qz(hl, h2, h3) 
+ h 2 Rx(h~,hz,h3) + hz Ry(h~,h2,h~) 
+ h] R~(h~, hz, h 3) + h~hzSxy(hl, h 2, h3) 
+ hzh3Sy~(hbh2,h3) + h3htS~x(hz, h2,h3)], (12) 

where 

ax = - ~ ~ ~ 7~,., sin 2zffhtl+h2m+h3n), (13) 
l m n 

R,, = ~ ~ ~ 6~,~ cos 2zt(hzl+ h2m + han), 
l m n 

(14) 

* Defined so that l, m and n are integers and the funda- 
-f  mental peaks (101), (2il) etc. are labelled (~,0,~z), (1,~-,½) etc. 

Sy~= ~ ~ ~ e}',~ cos 27t(hxl+h~m+h3n ) . (15) 
l m n 

The average atomic displacement for our case, a cubic 
crystal, must display symmetry across {100} and {110} 
planes and the same symmetry should exist in reci- 
procal space. From this symmetry the following 
relations have been derived by Sparks & Bode (1966) 
and Bode & Sparks (1971): 

Qu(hx, h2,h3) = Qz(h2,hl,h3), (16) 

Qz(hl, hz, h3) = Qx(h3, hz, hi),  (17) 

Ru(ha, h2,h3) = Rx(h2,hl, h3) , (18) 

Rz(hx, h2,h3) = R~(h3,h2,hl) , (19) 

S:~u( h z, h2, h3) = Suz( h3, h2, h a) , (20) 

Szx(hz, h2, h3) = Suz(h2, hx, h3) . (21) 

h ( 
, 0,0 

' - '  O, ~., ~. 

0 0 2 h 3  • • - 

h= 
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Fig. 1. Minimum repeat volumes for (a)/Os~o and (b) Qz, Rz 
and Suz. 
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Inserting these equations into equation (12) yields 

1D(h~,h2,h3) = NxAxB(f a - f  B)2[l°sRo(ha,h2,h3) 
+ hlQ~(hl, h2, h3) -b h2Q~(h2, hi, h3) 
+ h3Qx(h3, h 2, hi) + h~Rx(h 1, h 2, h3) 
+ h~R~(h2,hl,h3) + h]Rx(h3,h2,hl) 
+ hth2Suz(h3, h2, hi) + h2h3Suz(hl, h2, h3) 
+ h3hlSyz(h2,h~,h3)]. (22) 

The expressions for 7, 6 and e contain the quantities 
[fA/(f.4 -fB)] z, [fn/(fa - f  n)] z and f a f  B/( f  A --fB) z. They 
depend on sin 0/2 but for a limited 20 range they can 
be considered constants. (This dependence can be cor- 
rected for; see Appendix II.) Then not only I°Ro but 
also Q, R and S are true Fourier series in hs, h2 and 
h3 with period 1. Using this periodicity it is possible 
to separate the various terms in equation (12) from 
each other (Sparks & Bode, 1966). 

[Iz)(ht, h2,h3)- ID(hl-  1,h2,h3)]/Nxaxn(f a - f B )  2 
= A flz)(hl, hz, h3) = Qz(hx, h2, h3) + (2hx - 1)R:~(ha,h2, h3) 
+ h2Suz(h3,h2,hl) + h3Suz(h2,h3,hl), (23) 

[Iz)(hi + 1, hz, h3) - 2Iz)(hl, h2, h3) 

+ ID(hl- 1, h2, h3) l / Nx Ax B(f a - f  n)2= A~ID(h. h2,h3) 
= 2R~(hl, h2,h3), (24) 

[(lz)(hx, h2,h3)-lz)(hs- 1,h2,h3))-(1D(hl, h2-1,h3) 
- l z ) (hs -  1,h2- 1,h3))]/NxAxB(f A--fB) z 
= A1A2ID(h, h2, h3) = Syz(h3, h2, hi).  (25) 

When /1) and the differences AIID, A~Iz~ and A1A2I D 
are known, then Qx, Rx and Sy~ and thus Is°Ro, lSM 
and Ijz, ros can be recovered from measurements at 
only one temperature. This requires measurements in 
volumes (hi,h2, h3), (hi  - 1, h2, h3) etc. 

3 I" 1 
2" 4" 4 / 

~ 3_ 0 1 Surface normal 

1, 0,.0 
1,0,~ 

¢ Q / /7 

1 1 1 
/ ~' g' ~ 
- - T  

O, p O  O, ~ 1 / / /  
1 

0 , 0 ,  5 - 0,0,1 

!//" 
1 1 ~,0,~ 

1 ,5 ,1  
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h2 

Fig. 2. Tota l  explored  vo lume  in reciprocal  space. The  unit  cell emp loyed  is half  the usual  one  so that  the  (101) peak  is 
labelled (½, 0,½) etc. 
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Because of cubic symmetry the minimum repeat 
volumes of I ° SRO, Qx, Rx and Syz are much smaller than 
the unit cell in reciprocal space. For the b.c.c, lattice 
these volumes are shown in Fig. l(a) and l(b). For 
l°Ro it is a tetrahedron and for Qx, Rx Sxy the part of a 
prism above or below the shaded plane in Fig. l(b). 
This result for IORo and Qx can be found in Sparks & 
Borie (1966) and for Qx it is also developed in Appen- 
dix III. 

2.2. Application to the present problem 
The several volumes required, (ha,h2,h3) etc., can be 

condensed to a variety of small complex shapes, de- 
pending on the experiment. In Appendix I this is shown 
for the present problem, a b.c.c, crystal explored with 
a radiation of fairly long wavelength. (Co Kc~ was 
employed to minimize fluorescence in this experiment). 
The final reciprocal lattice volume to be explored con- 
sists of ten tetrahedra like the one in Fig. l(a), each 
one with a corner at a Bragg peak; see Fig. 2. The 
diffuse intensity was measured at 983 points in this 
volume. The experimental conditions did not permit 
higher angles than 136 ° 20 with Co Ke; therefore 
Mo Ke radiation was used for 89 points with high 20 
values. 

The scattering factors, fFe and f~ro, were taken from 
Batterman, Chipman & de Marco (1961) and from 
Cromer & Waber (1965) respectively, and the disper- 
sion corrections for Co Kc~ radiation from the tabula- 
tion by Cooper (1963) and for Mo Ke radiation from 
International Tables for X-ray Crystallography (1962). 

3. Experimental procedure 

3.1. Sample preparation 
A single crystal, nominally Fe-3.9 at.% Mo, 16 mm 

in diameter and 60 mm long, was given to us by P. 
Kettunen (Kettunen & Forst6n, 1964). A disk was cut 
from the bar with its flat surfaces approximately paral- 
lel to a (2]-1) plane. Analysis by X-ray fluorescence and 
with a microprobe indicated a uniform composition of 
3.86 + 0.09 at.% Mo. 

After etching the specimen was annealed at 1050 °C 
for 1 hr (inanevacuated quartz capsule), water quenched, 
reannealed in a vacuum furnace at 550°C for 5 hr and 
cooled at about 1.5°C per sec. After final electro- 
polishing the intensity of Fe K0c fluorescence produced 
with Cu radiation was constant for 20 larger than 20 °, 
so no correction of the scattered intensity for rough- 
ness was needed in the region explored (de Wolff, 
1956). 

3"2. Measurements 
Measurements were made with a General Electric 

XRD-5 diffractometer equipped with Picker electro- 
nics, a scintillation counter, and a pulse-height ana- 
lyzer. The Co K~ or Mo Kc~ radiation employed was 
monochromated with a doubly bent LiF crystal as de- 
scribed by Schwartz, Morrison & Cohen (1963). The 

specimen was mounted in a vacuum camera (designed 
by Gragg, 1970), consisting of a beryllium hemisphere 
100 mm in diameter pressed against a circular steel 
frame. This frame attached to the standard General 
Electric quarter-circle eucentric goniometer. The spe- 
cimen was fastened on a smaller goniometer inside the 
camera, which permitted fine adjustments of its orien- 
tation. The initial orientation was Z=90  °, with the 
(2]-1) direction parallel to the ~0 rotation axis. 

For Co Ke a vanadium oxide filter with 90 % trans- 
parency was inserted near the exit slits of the mono- 
chromator housing. The measured Co radiation was 
then counted for 220,000 counts of V Kc~ fluorescence 
in a monitor counter. This procedure eliminated any 
variation in the beam power during the measurements. 
The background (0.22 cps) was measured with a lead 
beam trap in the sample position. 

2/2 and 2/3 contributions caused Fe fluorescence 
from the specimen which was accounted for as follows. 
The scattered intensity was measured with and without 
a MnO filter in front of the receiving scatter slit at 
many points. The transmission (/'co) of the MnO 
filter for Co Ke was determined by moving the filter in 
and out of a diffracted beam from a polycrystalline 
Si sample. The transmission (TFe) of the filter for 
Fe Ke was measured by moving the filter in and out 
of the Fe fluorescence from the crystal produced by 
Cu K~. 

The observed intensities from the Fe-Mo crystal 
with the filter IMno, and without the filter,/, are related 
by 

I[(1 - x) Too + xTFe]=I~no, (26) 

where x is the fraction of Fe Kc~ radiation. The calcu- 
lated intensity of Fe Ke (x .  I) varied less than 10 % 
when I varied 500 %. Its value was about 40 % of the 
smallest intensity observed for any point, but more 
typically was 25 %. 

The direct beam intensity I0 was measured with a 
polystyrene sample at 127 ° 20 with a wide open scatter 
slit. The method has been described by Sparks & 
Borie (1966), the only differences being that we took 
the intensity in electron units per molecule of CsHs 
(Compton+ coherent) as 64.6 (calculated by Sparks & 
Boric, 1966) instead of their measured value of 61.1 
because we felt that a number of important details may 
have been neglected in their measurement. Applying 
a 5 % correction for double Bragg scattering (Warren 
& Mozzi, 1966; Strong & Kaplow, 1967), the intensity 
was 0.53 x 108+0.08 x 108 cps.* After correction for 
background and fluorescence, the measured intensity 
from the Fe-Mo crystal was transformed into electron 
units per atom, Ieu/N, 

* The error is due to uncertainties in slit dimensions and 
distance from the slits to the sample. Note however that in the 
conversion to leu/N, equation (27), I0 is not used, but rather 
the counts from polystyrene. The error in I0 due to uncertain- 
ties does not propagate to leu/N. 
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Ieu I x atomic weight of alloy x (lzlQ)p' 
N - I '  x molecular weight of C8H8 x (IzlQ)p 

1 (27) 
x t-3;~/) x 0.95" 

(Ieu/M)' is the calculated scattering per molecule from 
C8H8, I and I '  are the measured intensities from the 
specimen and from C8H8 respectively, p and p' the 
polarization factors for the sample and C8H8 respec- 
tively, and 0.95 is the double Bragg scattering correc- 
tion. The mass absorption coefficient for the sample 
(/z/~o)=69.2 was taken from Heinrich (1966) and for 
C8H8, (/t/Q)'=6.2, from International Tables for X-ray 
Crystallography (1962) adjusted by comparison with the 
measurements by Sparks & Borie (1966) for Cu Ke. 

Finally, the Compton scattering from the alloy taken 
from International Tables, was subtracted from Ieu/N 
to get the total coherently scattered diffuse intensity, 
I9. For Mo Ka no monitor was employed as the meas- 
urements took only two days. No Fe fluorescence 
could be detected. 

After correction for background the measured inten- 
sity was transformed into electron units per atom 
Ieu/N. Because of the extreme depth of penetration of 
Mo Ka in the polystyrene the scattering from it could 
not be obtained precisely. So I0 was established as 
follows. 21 data points were measured with both Co 
and Mo radiation. Ix) for Co K0~ was calculated and 
the common points were multiplied by (f2e)MoK~ / 

2 (fFc)coK~," A direct beam intensity, I0, for Mo Ka was 

211 2i2 211 2]2 

100 101 100 101 

(a) (b) 

2i1 21"2 2i1 212 
/ ,,, _,/ / \ , /  

/ /is,,,, / ,,,_____j 

100 101 100 101 
@) (a) 

Fig. 3[ Sections of the diffuse intensity (in electron units) through the explored volume parallel to (½, ½, 0). (a) Total diffuse intensity, 
ID; (b) Local-order intensity, ISRO; (C) Size-effect modulation, Is~; (d) Huang plus TDS intensity, IU,TDS, 
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then chosen so that agreement to within 10% was 
obtained between ID calculated from the Mo Kc~ data 
and the transformed ID from the Co Ke data. The 
direct beam intensity so chosen was 0.47 x 108 cps. 
[The choice of the ~ =  ratio as a multiplying factor 
rather than the ratio (fF~-f Mo) 2 (the term for IsRo) isjus- 
tiffed by the result of the separation procedure for these 
data points. IH.rD s makes up about 60 % of the total 
diffuse intensity for the 21 data points and it depends 
on.pF~ (see Appendix II).] 

Then 

Ieu 2 atomic weightx (#/Q) 
N N A x p  

m2c 4. R 2 I , ( 2 8 )  
x ( - ~ - ) x  G- x To 

where NA is Avogadro's Number, p is the polarization 
factor, R is the distance between the receiving slit and 
the sample, A, is the receiving slit area and 1 and I0 
are the measured intensity and the direct beam inten- 
sity, respectively. The mass absorption coefficient 
(/t/0)=36.5 was taken from Heinrich (1966). The dif- 

s T 1 
2 2 2 

201 oN,, 2T1 

\ \ \ \ 

io\,k 
z r 3  z ~ z 
2 2 2 2  2' 

(a) 

s T I 
2 2 2 

201 

3 T 3 3 
2 

2 1 1  

~" 3 
2 2 2 

(b) 

s T 1 
2 2 2 

320 

201 

\ / ~ -  .S,- -oqZ,,rt~-,~ 
\ ~ ' ~  ~- -"  f/I v l 

" -  I I 

\ ]i I':'''" ',k lJ 

:3 T 3 :3  T 
2 2 2 2 

(c) 

211 ,~nl,/' , ~, I _! !_ ~, "~21"1 

3 3 3 T 3 3 1 ~  

s T 1 
2 2 2 

2 2 2 2 

(d) 
Fig. 4. Sections of the diffuse intensity (in electron units) through the explored volume parallel to (½, 0, ½). (a) Total diffuse intensity, 

Iv; (b) Local-order intensity, Is~o; (c) Size-effect modulation, IsM; (d) Huang plus TDS intensity, I/-/, TDs. 
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fuse intensity, ID, was obtained from Ieu/N after sub- 
traction of  the Compton scattering taken from Inter- 
national Tables for X-ray Crystallography (1962). 

ID obtained with Mo Ka was multiplied by (fFe)ZorJ 
(fFe)2MoX~ SO that all data was referred to the Co wave- 
length. 

4. Results and discussion 

Preliminary runs indicated that the diffuse intensity 
had its maximum at the fundamental peaks (101), (2]1) 
and (301) indicating that there was clustering or at 
least no short-range order, for the intensity near the 
Bragg peaks could be only the Huang peak plus TDS. 
(It was for this reason that data points were concen- 
trated near peaks.) Streaks of  high intensity extend 
about 0.35 h-units from the peaks (101) and (2]1) in 
approximately the [3 3 5] and [3 5 3] directions respec- 
tively. Figs. 3(a) and 4(a) show two sections through 
the explored volume where the streaks are evident. 

To carry out the three-dimensional Fourier analysis 
of lgR o for e{S it is necessary to extrapolate under the 
Bragg peaks. This extrapolation is not crucial however, 
Gragg (1970). IgRO had also to be interpolated in areas 
far away from the peak to fill out all the 506 grid 
points in the minimum repeat volume for l°sRo . Know- 
ing I°RO in its repeat volume it can be generated 
throughout reciprocal space, particularly in a cube 
with its corners at (000), (100), (0]0), (1~0), (001), 
(101), (0].1) and (1].1). Three-dimensional Fourier anal- 
ysis was performed in this cube to get the SRO param- 
eters, and they are given in Table 1, column 1. 
Column 2 contains the values after subtracting the 
indicated constant background to make ~0 = 1, as it 
should be theoretically. To further illustrate that the 
extrapolation under Bragg peaks is not important, in 
the last column are the changes in ~ ,  increasing the 
value of IORo at such peaks 16 %. 

To study the influence of errors in measurements due 

to counting statistics and to small errors in the angular 
settings a + 5 % relative random error was added to the 
measured intensity. This resulted in a + 5 % error in 
ISR o and the resulting error in ~ was less than + 0.0005. 
This error is even less than the change in ~ due to 
extrapolation (Table 1, column 5); therefore it is 
thought that 0~ is accurate to the second decimal place. 

The values corrected for the variation in scattering 
factors over the volume are in column 3. The value 
of c~0, 1-11 is the best yet reported. The constant sub- 
traction needed to bring the value of c~0 to unity after 
this correction, 0-24 cps, is about 2.5 % of a typical 
data point, and it is not unreasonable that some para- 
sitic scattering of this order of magnitude was missed. 
The values of ~'s in this case are given in column 4. 

Knowing I0SRO, Qx, R,, and Sy, in the explored volume 
of reciprocal space IsR o, IsM and l~,,a-Ds can be calcu- 
lated separately from equation (22). They are plotted 
in the same two sections as their sum ID [see Figs. 3(b), 
(c),(d) and 4(b), (c), (d)]. Note that most of the 'satellite' 
intensity seen in Figs. 3(a) and 4(a) is due to size 
modulation and Huang+thermal  diffuse scattering. 
Outside the satellites and far from the Bragg peak 
ISR o constitutes about 75 % of I D. Close to the peaks 
it is a smaller fraction, the smaller the higher the 20 
value of the peak. 

To examine the local atomic arrangements corre- 
sponding to the order parameters, the computer pro- 
gram developed by Gehlen & Cohen (1965) and ex- 
tended by Gragg (1970) to include up to 108,000 atoms 
was run with al, a2 and a3 given in Table 1. The pro- 
gram starts with any distribution of A and B atoms 
of a given composition (random in this case) and 
exchanges the atoms. After each exchange the speci- 
fied al for the distribution are calculated and when 
these values deviate less than a certain preset amount 
from the measured a~ (2 % in this case) the program 
lists the final atomic distribution. The values for other 

Table 1. Warren local-order parameters ~ for Fe-3.9 at.% Mo 
2 4 Change in ~ 

Coordination 1 uncorrected 3 corrected peak increased 
shell lmn uncorrected 0"46 cps removed corrected 0-24 cps removed 16% 

0 000 1.216 1.000 1.112 1.000 0.004 
1 111 0.129 0.125 0.099 0.097 0.004 
2 200 0.065 0.064 0.043 0.043 0.004 
3 220 0.052 0.053 0.042 0.042 0-004 
4 311 0.036 0.036 0.027 0.027 0.003 
5 222 0.041 0.040 0.033 0.032 0.003 
6 400 0.036 0.036 0.036 0.035 0.003 
7 331 0.019 0.019 0.015 0-016 0.003 
8 420 0.017 0.017 0.013 0-013 0.003 
9 422 0.010 0.010 0.006 0.006 0.003 

10' 511 0.012 0.012 0.010 0.010 0.002 
10" 333 0.020 0.020 0.019 0.019 0.002 
11 440 0.001 0.010 - 0.001 - 0.001 0.002 
12 531 0.004 0.004 0.003 0.003 0.002 

In column 1 are given a~'s calculated from o ISRO, in column 2 the same ~'s adjusted to ~0---1 by removing 0.46 cps from the 
measured data (5.0% of a typical point), in column 3 are given ~'s corrected for the variation of.f's in Q, R and S with sin 0/2, 
in column 4 the same a~'s adjusted to ~0--1 by removing 0.24 cps (2.5% of a typical data point) and in column 5 the increase in 
a~'s when the peak value for l°Ro is increased. Although not reproduced here, the g~'s start to oscillate around zero at i= 14. 
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c~'s for the final distribution can also be calculated and 
compared with measured values. 

We have employed four  sets of  0(1, 0(2 and c~3; the 
ones f rom column 1, 3 and 4 in Table 1 and a r andom 
set, i.e. ~1 = 0(2 = ~3 = 0.0(4 ,  t~5 and 0( 6 were calculated to coin- 
pare with experimental values. The model was 16,000 
atoms (20 x 20 x 20 unit cells). In addition one run was 
carried out with ~1, 0(2 and 0(5, 0(3 being calculated for 
comparison with the measured value. The measured 
and calculated c~'s for these cases are given in Table 2. 
The calculated c~'s are all smaller than  the measured ones, 
the difference being approximately the same in all cases. 

For  a detailed analysis of  the atomic distribution we 
have regarded two Me  atoms as a pair if they are 
first, second or third nearest neighbors. We have then 
calculated how many atoms belong to pairs, triplets, 
quadruplets ,  etc. Fig. 5 shows how many  Me  atoms 
belong to clusters below a certain size for the five cases 
studied. There is a marked  difference between the 
r andom case, no. 4 in Table 2, and the other four 
cases. The difference is very small between no. 2 and 
5. In case no. 1 more atoms are in larger clusters, as is 
expected, 0(1, e2 and ~3 being larger. The medians of  

the curves for cases 1 to 5 are 7, 6, 6, 2 and 4 Me  atoms 
respectively. The average cluster sizes, excluding 
single Me  atoms and pairs are 7.9,7.1,7.6,4.5 and 6-5 
respectively. 

A further study has been made of  the clusters of  case 
no. 3. Of  the 29 clusters with two atoms, 9 were first, 
7 were second and 13 third nearest neighbors. Of  the 
13 triplets only 4 had the most compact  shape of  two 
first nearest neighbor bonds and one second nearest 
neighbor. All clusters were rather open. Fig. 6 gives 
projections along the three unit-cell edges of  the largest 
cluster of  39 atoms. I f  a cluster is inscribed in a box 
with its edges parallel to the unit cell edges (see Fig. 6) 
an average Me  concentration can be calculated. In 
Table 3 the average M e  concentrat ion for all clusters 
with more than 9 atoms is given for computer  runs 
1, 2 and 3 in Table 3. The M e  content is between 5-5 
and 16 a t .% which is 1.4 and 4.1 respectively times 
the average value of  3-86 a t .%.  The clusters are rather  
irregular and most  of  them have no particularly long 
or short direction. Thus, there is no tendency for disk 
format ion as might have been expected f rom Horn-  
bogen's  (1961) observations. 

Table 2. Experimental 0(-values used to generate atomic configurations and 0(-values calculated from these 

Case 
number 1 2 3 4 5 

0~ Exp Calc Exp Calc Exp Calc Exp Calc Exp Calc 
1 0.129 0.099 0.097 0.000 0.099 
2 0.065 0.043 0.043 0.000 0.043 
3 0.052 0-042 0.042 0.000 0.042 0.018 
4 0.036 0.015 0.027 0.007 0.027 0.006 0.000 0.027 0.004 
5 0.041 0.012 0.033 0.010 0.032 0.003 0.000 0.033 
6 0.037 0.013 0.036 0.006 0.035 0.001 0.000 0.036 -0-006 
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Fig. 5. The number of Me atoms belonging to clusters below a size indicated on the abscissa. The circled numbers correspond 
to the cases defined in Table 2. 
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Table 3. Average Mo concentration in boxes circum- 
scribing clusters with 10 or more atoms 

Clusters s ize  Average Mo content 
(number of Mo atoms) (at.%) 

10 9-7 
11 11.9 
12 9.3 
13 11.1 
14 11.5 
15 7.7 
16 9.1 
17 13.1 
18 7-3 
19 6.0 
20 16.0 
25 6.2 
28 8.8 
29 3.5 
39 4.8 

In Appendix III, it is shown that Qx for the chosen 
volume was also obtained in its minimum repeat vol- 
ume in this study. As for I°Ro a three-dimensional 
Fourier analysis was carried out after extrapolation 

. . ; .- 

• 2:.  • : 

z projection 
7,5 

° O • • 

• • • • 

• • ° • 

• • • • 
• • • • 

• • 

• • 
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projection/ 

x projection / Y  projection 

Fig. 6. Projections along unit-cell edges of a 39-atom cluster for 
case 3 in Table 3. Total volume: 405 unit cells. Average Mo 

content: 5 at.%. 

of Qx under the Bragg peaks and interpolation in areas 
away from the peaks. The Fourier coefficients (7~'m,) 
are defined in equation (6). For  7Tm" the following 
symmetry holds (Sparks & Boric, 1966) 

71nm ~ x _ - -  7~mn 7~mn = " = 7tmn 

However, 
x x x )'Tin, # 7,-~, and 7tm,# 7,,,,- 

Thus, contrary to o~lm,, 7[mn is not the same for l, m, n 
belonging to a certain shell i. 

7}¢m, is related to the x component of the atomic 
displacement & through equations (6) and (9)-(11). If 
A designates Fe and B Mo then the term in equation 
(6) containing ~-X~eVe is dominant, because X F e / X M o  = 25 2t lran 

and we get" 

~)~mn ~-- 27C[fFe/(fFe - - f M o ) ]  2)(XFe/XMo..I_O~Imn)<Xlm n '  FeFo >. (29) 

The total displacement Aa (film.) is of more interest than 
the x component only. The y and z components can 
be calculated from 7 z because 7,%l = Y~;m, = 7~,,1" 

In Table 4 is given 7 x, the length of 6~ ,  and its angle 
with the vector (/, m, n). The average displacements are 
quite small, the largest being about 2 pro mille of the 
smallest interatomic distance. 

Table 4. The Fourier coefficients o f  Qx, the average 
displacement between two Fe atoms 6Fe Fe and the 
direction of  this displacement, 9, relative to the 

interatomic vector (1, m, n) 

i lmn ~Xlmn [6tmnFeFel 
1 111 --0"116 0"0022 A 180 ° 
2 200 -0"046 ~ 0"0005 180 
2 020 0 l 
3 0"065 0"0010 0 

4 311 0"043 ~ 0"0006 10 
4 131 0.022 J 

5 222 0.003 0.00005 0 

6 400 -0.057 ~ 0.0006 180 
6 040 0 l 

7 331 -0.035 ~ 0.0007 156.1 
7 133 -0.038 J 
8 420 -0.027 
8 240 -0.005 0.0003 165.0 
8 024 0 

5. Conclusions 

The necessary procedures have been developed and 
tested for separating the local-order intensity and size- 
effect modulation from the total diffuse intensity meas- 
ured at only one temperature for a b.c.c, alloy. This 
procedure makes use of the symmetry of  the contribu- 
tions, as suggested by Sparks &Borie  (1966) and Borie 
& Sparks (1971). The Warren local-order parameters ~ 
have been derived from the local-order intensity for 
Fe-3.86 at .% Mo and using ~1, ea and c~3 the atomic 
distribution has been generated by a computer. The 
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average cluster size was between 7 and 8 Mo atoms, 
the maximum size being around 40 Mo atoms. The 
shapes of these clusters were rather irregular without 
any pronounced short or long direction and the clusters 
had about twice the Mo concentration as the overall 
alloy composition. From an analysis of the size-effect 
modulation the average static displacement of an Fe 
atom from a lattice point was found to be quite small, 
of  the order of 0.001 A. 
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sity) and the assistance of Mr H. Berg in making the 
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A P P E N D I X  I 

T h e  recovery  o f  IORo in a b .c . c ,  crystal 

It is sufficient to recover I~RO in its minimum repeat 
volume as it is then known in the whole reciprocal 
lattice. One is free to chose many positions for this 
volume in the reciprocal lattice; essentially the volumes 
can be placed at any reciprocal lattice points. In this 
work, it was necessary to choose a position close to 
the origin as the radius of the limiting sphere for the 
Co radiation employed is fairly small, 1.6 h-units. 

The total diffuse intensity, ID, at the point hbh2,h3 
is given by equation (22). Here (h~, hz, h3) stands for all 
points within the chosen volume for I°RO (see Fig. 1). 

To separate l°Ro in (ha, h2,h3) we must know Qz, 
Rx and Syz in (ha, h2, h3), (h2, ha, h3) and (h3, h2, ha). (See 
equation 22). However, instead of the needed regions 
(hz, hl,h3) and (h3,hz, ha) we can take the regions ( -h2 ,  
-hi ,h3)  and (h3 , -hb-h2) ,  knowing from Sparks & 
Boric (1966) and Boric & Sparks (1971): 

Ox( -h2 , -h l ,  h3)=-Qx(hz,  hbh3) } 
R:r(-h2,-hl ,  h3) =Rz(h2,ha,h3) (A.1) 
Syz(h3, - hi, - h2) = Syz(h3, h2, ha) 
Suz(-  h i , -  hz,h3) = - Suz(hl, hz, h3) 

Qz(h3,-hx,-hz)  =Qz(h3,h2,hl) } 
Rz(h3, - hi, - h2) = Rz(h3, h2, ha) 
Syz( -  h2,-  hi,h3) = -- Syz(h2,ha, h3) " (A.2) 
Svz ( -  hi,h3,- h2) = - Svz(hx, hz, h3) 

Now, form the differences A~lD(ha, h2, hs) and 
AxA21D(hI, h 2, h3) according to equations (24) and (25). 

A2Io(ha,h2,h3) = 2Rx(ha,hvh3) , (A.3) 

A1dzlD(ha, hz, h3)=Suz(h3,ha, ht) . (A.4) 

By permuting ha, h2 and h 3 in a proper way we also 
get 

A~ID(-- h2, - ha, h3) = 2Rx( - h2, - hb h3) = 2R:~(h2,ha, h3), 
(A.5) 

A3Aalz)(- h] , -  ha,h3) = Sr~ ( -  ha,h v - h3) 
=-Svz(ha,h2,h3). (A.6) 

[AmA 1 is defined in analogy with AIA2, the difference 
being taken in the third and the first index instead of 
in the first and the second, see equation (A.17).] 

A~ID(h 3, - h  a , -h2)=2Rx(h3,h2,hl) , (A.7) 

A2A aiD(h3, -- hi, - h2) = Svz(hz, hi, h3). (m.8) 

Thus, Rz and Svz are recovered. To get Qz form the 
difference Aflg(ha, hz, h3) according to equation (23) and 
in similar ways the differences Aa1D(-h2,-hi ,  h3) and 
Aala(h3, -ha, -h2). 

A ~Ih(hl, h2, h3) = ax(ha, h2, h3) 
+ (2h~ - 1)Rz(ha, h2, h3) 
+ h2Suz(h3, h2, hO 
+ h3Svz(h2, h3, hi), (A.9) 

A t19( - h2, - hi, h3) = - Qx(h2, hi, h3) 
- (2h~+  1)R~(h2,hl, h3) 
-- hlSvz(h3, hz, ha) 
,h3Svz(ha, h2,h3), _ (A.10) 

_-_~_.,~____ .7..~---.~__ -7 "-~ _ ~ __ 

AslD(h3, - hi, - h2) = Qz(h3, ha, hi) 
+ (2h3-1)Rz(h3,h2,hl) 
+haSvz(h2,ha, h3) 
+ h2Suz(ha, h2, h3). (A. 11) 

Inserting equation (A.3)-(A.8) into (A.9)-(A.11) gives 
Qx. We now know all the quantities in equation (22) 
except l°ao(ha, h2, h3) which can then be solved by tak- 
ing the difference between the right and left hand sides 
of the equation. To form the intensity differences re- 
quired in equations (A.3)-(A.11) we need to know the 
diffuse intensity in the following fifteen regions. (The 
factor NxaxB(fa--fB) 2 is omitted here for convenience.) 
The regions are underlined and numbered. 

For:  

Allg(hl,h2,h3)=ID(hi, hz, h3)-ID(ha- 1,h2,h3), (A.12) 
1 2 

for: 

A~ID(ht, hz, h3)= I~(hl + 1,hz, h3) 
3 

+ ID(hi-- 1,h2,h3)-2ID(hbh2,h3) , (A.13) 
for: 

A2AxlD(hx, h2, h3) = lg(ha, h2+ 1, h3) - Iz)(hl - 1, h2 + 1, h3) 
4 5 

- ID(hl, h2,h3) + Iz)(hi- 1,h2,h3) , (A.14) 
for: 

AalD(-h2, -ha,h3) 
=ID( - -h2 , -h l ,  h3) - I z ) ( -h2 -1 , -ha ,h3 ) ,  (A.15) 

6 7 
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for- 

AIo~(-h2, -h~,h3) 
= I ( - h z +  1, - ha,h3) + I D ( - h z -  1, - ha,h3) 

8 

- 2[n( -  hz, - ha,h3) , (A.I6) 
for: 

A3AIlD(-hz, -hbh3)  
= I a ( -  h z ,  - ha, h3) - I a (  - h z  - 1,  - hl, h3) 
- I a ( - h 2 ,  -ha, h3 -1 )+  I D ( - h z -  1, -ha, h3-1),  (A.17) 

9 10 
for: 

AaI~o(h3, -ha, -h2) 
= I a ( h 3 , - h i , - h z ) - I D ( h 3 - 1 , - h a , - h z ) ,  (A.18) 

11 12 
for: 

zl~ID(h3, - h a ,  - h2) 

=ID(h3 + 1, -ha,  - h2 )+  ID(h3-1, -ha, -h2) 
13 

-- 2ID(h3, -- hb - hz) , (A.19) 
for: 

A2AllD(h3,-ha,-hz) 

=ID(h3,-h~+ 1 , -ha)- ID(h3-1 , -h~+ 1, - h2) 
14 15 

- ID(h3,-ha,-h2)+ID(h3-1,-ha,-h2). (A.20) 

By using the symmetry of ID for a cubic crystal across 
the planes h~ = 0, hz = 0, h3 = 0, hz = - h3, h2 = - h~, and 
h~ =h3 we can reduce the number of regions to ten 
continuous regions. The numbers in the rectangles re- 
fer to the fifteen regions. In all cases the volume/den- 
tiffed in Fig. 2 is the one in the set indicated by I(j). 

I(hl, hz, h3)= I ( - h 2 , -  hb h3)= I (h3,- h l , -  h2)= I (1 ), 
[]7 ['~ 1"~ (A.21) 

I ( h l -  1,hz, h3)=I(1 -h~,hz, h3)=I(2) , (A.22) 

I(ha + 1,h2,h3)=I(3) , (A.23) 

I(hl, hz + 1, h3) = I(hx, - h z -  1, h3) 
nq 
=I(h~,-h3,h2+ 1)=I(h3,-ha,  hz+ 1) 
=I(h2 + 1 , - h i ,  h3)=I(5),  (A.24) 

I ( h l -  1,h2+ 1,h3)=1(1 -ha, -h2-1 ,h3)  
N 

= l ( 1 - h ~ , - h 3 , h z +  l )=l(4)  , 

I(-- h2, - hi, h3) = I(h3, - hi, - hz) = I(1),  

D 

(A.25) 

(A.26) 

I ( - h z -  1, -hl ,h3)=I(h2+ 1, -hbh3)=l (5 )  , (A.27) 

D 
I ( - h 2 +  1 , -h l ,  h3)=I(6) , (A.28) 

71 
[ ( -hz ,  -ha, h 3 - 1 ) = I ( 1 - h 3 , - h a , - h z ) = I ( 7 ) ,  (A.29) 

N 
I ( - h 2 - 1 ,  - h b h 3 - 1 )  =1(]12+ 1, - h i ,  1 -h3)=1(8) ,  

(A.30) 

I(h3, -ha, -hz)  =I (1) ,  (a.31) 

D 
1 ( h 3 - 1 , - h a , - h 2 ) = I ( 1 - h 3 , - h a , - h 2 ) = I ( 7 ) ,  (A.32) 

D 
I(h3+ 1 , - h a , - h 2 )  =I (9 ) ,  (A.33) 

D 
I(hz, - hi + 1, - hz) = 1(h2, ha - I, - h2) = I(h3, hz,-hl  + 1) 

YA 
= I ( h l -  1,hz, h3)=l(1-ha,  hz,h3) =I(2 ) ,  (A.34) 

rn 
I (h3-1,  - h i +  1, -h z )= l (1  -h3 ,ha -  1,-h2) 

D 
= I ( 1 - h 3 , h 2 , - h i +  1) 
=1(1 - h i ,  ha, 1 -h3) 
=I(10) .  (A.35) 

For a certain point (hbhz, h3) in the minimum repeat 
volume for I°Ro these expressions give the ten points 
in which the intensity has to be measured. Let us 
denote by I ( j )  the diffuse intensity divided by 
NXAXB(fA --fB) 2 in volumej. The following set of equa- 
tions has been used to derive IgR o by combining equa- 
tions (A.3)-(A.35). 

Rx(hx, hz, h3) =0.5[/(3)+ I (2) -2I (1) ] ,  (A.36) 

Rz(hz, h~,h3) =0.5[I(6)+I(5)-2I(1)1,  (A.37) 

Rz(h3,hz, h1)0.5[I(9)+I(7)-21(1)] , (A.38) 

Sy~(h3,hl, h z ) = l ( 5 ) - I ( 4 ) -  I(1) + I (2 ) ,  (A.39) 

Syz(hx, hz, h 3 ) = l ( 7 ) - l ( 8 ) - l ( 1 ) + l ( 5 )  , (A.40) 

Syz(hz, h3,ha) = - 1(2) + I(10) + 1(1) - I(7),  (A.41) 

Qz(hl, hz, h3) = 1(1) - I(2) + (2hz + 1 )Rz(hbhz, h3) 
+ h3Syz(h3,hx, h2)-  hlSyz(hz, hz, ha), (A.42) 

az(h2, hl, h3) = - I(1) + 1(5) + (2h3-1 )R:z(h2,hl, h3) 
+ hzSuz(h3,ha,hz)-hiSuz(h~,hz, h3), (A.43) 

a:~(h3,ha,h2) = 1(1 ) - 1(7) - (2h l -  1 )Rz(h3, hz, h~) 
+ hzSvz(hz, h3,hl) + h3Svz(hl,h2,h3) , (A.44) 
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I°~o = I(1) -- [ -  hzQx(hb h2, h3) - h3Qx(hz, ha, h3) 
+ h~ Q.:(h 3, h~, hE) + h22R~(ha, h E , h3) 
+ h]Rx(h2,ha,h3) + h~Rx(h3,h2,ha) 
+ h2h3Svz(h3, ha, h2) - h3haSvz(hl, hz, h3) 
-- hah2Svz(h2, h3, hi)]. (A.45) 

A P P E N D I X  H 

Correction for the variation in scattering factor ratios 
in Q, R and S with sin 0]~ 

Consider first the expression for the size-effect-modu- 
lation Is~, given by equations (3), (6) and (9)-(11). 
The average displacement for any vector type (ran) 
must equal zero (Warren, Averbach & Roberts, 1951). 
Hence 

A B  A B  . A B A  A A  A A  xap,,~ (6,,,6)+ x~P~n (6,,,,)+ XAPmn((~"n) 
+ xnp~m~S (gSm~) = 0,  (B.1) 

AS is the probability of finding a B atom at m where p "n 
when an A atom is at n. Sparks & Borie (1966) have 
shown that this condition simplifies the expression for 

?~:m,,=2n { f a  ( xa + ) A A  

(UA-A) ~ ~'~" x .  <x,,= > 

f~ (x~ + at",,) <x~l~>} (B.2) 
(fA - f n )  

Let A stand for Fe and B for Mo. Then in our case 
xa/xB=25 and the first term in equation (B.2) is domi- 
nant. Combining equation (13) and (B.2) we then get 

( f  uo-- f  v~)2Q~ = -- f  F~(f F~--f Uo) 
x ~, ~, ~, 2rC(XvdXMo + OQ"n)<xFeFe> 

l m n 

x sin Dt(hll+ hzm + h3n). (B.3) 

A function that is more independent of sin 0/2 than 
Q~ can be defined as 

q~= --(fF~--f io)/ f  F~'Q.~" (B.4) 

Following a similar procedure for Rx and Sy~ equations 
(14) and (15) can be written 

(fMo--fF¢)ZRx~--f~¢ ~ ~ ~ ( - 2  z~z) (xvdxMo+O~t,,~) 
l " n 

F~F~ 2 2n(hll + hzm + h3n ) (B.5) × < ( x ~ .  ) > c o s  

(fMo--fr~)zS~--f}o ~ ~ ~ (--4n2)(xrdXMo+~,m,) 
l " n 

× \.)'/"FeFe'~FeFe\lnm "~lnm / cos2zc(hfl + ham +han ) . (B.6) 

Functions more independent of sin 0/2 than R~ and 
S~z are 

r~=(.f Mo--f r~)2/f2~Rx, (B.7) 

Sy~=(f Mo--f Fe)Z/f2eSy~ . (B.8) 

The transformation in equations (B.4), (B.7) and (B.8) 
is performed with values offMo and fv¢ only for points 

in subvolume 1, see Fig. 2 after the initial separation. 
A modified diffuse intensity due to the modulation, 
I~M, and to thermal diffuse plus Huang scattering 
I~.XDS can then be calculated in the entire measured 
volume according to a modified equation (22) 

(I'sM + I~.TDs)/NxAxs=f v~(f Mo--f v~)[haqx(ha,hz, h3) 
+ hEqx(hE, hl,h3) + h3qx(ha,h2, hl)] +f~e[h~rx(ha,hE, h3) 
+ @x(h>h,,h~) + @'x(h3,h~,hO + hah~s, Ah~,h>hO 
+ h2h3suz(hx, h2, h3) + h3hasuz(h2, h3, h i ) ]  • (B.9) 

The separation is performed again, and a small portion 
of the data appears as Isrto (although there was none 
in the input), because the variation in scattering factor 
with sin 0/)~ alters the symmetry of Q, R and S. This 
portion is the correction to be subtracted from Isrto 
from the first separation. This data is then Fourier in- 
verted to give a corrected set of a,. 

A P P E N D I X  HI 

The derivation of  Qx in its minimum repeat volume 

Qx is defined by equation (13) 

Qx(hl, ha, ha)= 
- ~, ~ ~ y'T",sin2n(hal+hem+han ) . (13) 

l m n 

Let us consider another point (h~, h;, h;) in reciprocal 
lattice whose coordinates are 

h',=½-h,, (C.1) 

h;= -½-h2, (C.2) 

h's = h 3 . (C.3) 
We then get 

a,(h,l,h,2,h,3) = _ x~ ~ ~ ~"/m,, sin 2z~[(½-haf t 
l In n 

- (½ + h2)m + h3n] 
= -  ~ ~ ~ Y~mn sin 2z~[h,(-/) 

l m n 

+ h2(- m) + h3n + ½(l- m)]. (C.4) 

For a b.c.c, lattice ( l -m)  is even, therefore 

ax(h'ph'2,h'3) = - ~ ~ ~ Y~m,, sin 2zc[hl(-I ) 
l " n 

+ h2(- m) + h3n 
= - ~ ~ ~ y["n sin 2ze[hll 

1 " n 

+ h2m + h3n]. (C.5) 

The following symmetry relations hold for 7, (Sparks 
& Borie, 1966) 

x _ x x (C.6) Yz", - -- )'finn = -- Y~-~t • 

Inserting equation (C.6) into (C.5) gives 

ax(h~,h'2,h'3)=- ~ ~ ~ ( -  ~,~",,) sin 2zfflhl 
l " n 

+h2m+h3n)= - Qx(ha,h2,h3). (C.7) 
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Let (hbh2, h3) represent the points in the minimum 
repeat volume for Qx below the shaded plane in Fig. 
l(b). Then (h'1,h'2,ha) represents the points above the 
shaded plane; from equation (C.7) it is evident that 
when Qx is known in the points (hi,hE, ha) it is also 
known in the points (h'l,h'2,h'a). Note that instead of 
the shaded plane in Fig. l(b) any plane could be chosen 
containing a line which is parallel to the h3 axis and 
goes through the point [1 T 1"~ 

In Appendix I, Qx(hl, he, h3), ax(h2, hi, h3) and 
Qx(h3,hbh2) were derived, where (hbh2,h3) represents 
the points within the basic tetrahedron in Fig. l(a). 
Due to the symmetries of Qx (Sparks & Borie, 1966) 
we have 

Q z ( - h 2 , -  hi,h3) = -Qx(h2,hl,h3), (C.8) 

and from the same type of reasoning as above we get 

Qx[(½- h3), h2, (½-  hi)]--- - Qx(h3,h2,hl). 

The points (hbh2,h3), ( - h 2 , - h l , h 3 )  and [(1-h3),h2, 
(½-hl)l  together fill out the part of the minimum repeat 
volume for Qz below the shaded plane in Fig. 1 (b). 
[This can easily be checked by inserting the values for 
hl, h2,h3 of the basic tetrahedron in Fig. l(a)]. Thus, Qx 
is known in its whole minimum repeat volume. The 
same type of reasoning leads to the conclusion that 
also Rx and Suz are known in their minimum repeat 
volumes. 

We thank Professor J. E. Gragg, Jr for pointing out 
to us the additional symmetry for b.c.c, systems that 
allows this separation. 
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Dynamical Calculation of Electron Scattering by Plasmons in Aluminum 
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Plasmon diffuse scattering (PDS) is calculated for AI(111) systematics using the multi-slice approach to 
dynamical electron scattering. It is found that PDS contributes strongly to Kikuchi bands, and to the 
decrease in the mean absorption coefficient which occurs when energy filtering is removed. Thickness 
fringes are found, which are similar to those for Bragg beams except at low thickness. The different 
behaviour in this region is explained. The effect of the (111) Kikuchi band on the variation of the path 
length for plasmon excitation with crystal tilt is considered in detail. 

Introduction 

The excitation of plasmons in crystals by fast incident 
electrons has been considered theoretically by several 
authors. An account of this work has been given by 

* Present address: Aeronautical Research Laboratories, Box 
4331, G. P. O., Melbourne 3001, Australia. 

Pines (1964). However, dynamical interactions of the 
plasmon diffuse scattering (PDS) can be readily im- 
plied from experiments with the electron microscope, 
such as the PDS thickness fringes observed by Kamiya 
& Uyeda (1961). 

These thickness fringes have been predicted by Fuji- 
moto & Kainuma (1962, 1963), Fukuhara (1963), and 
Howie (1963), who treated the PDS as coherent. Hei- 


